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Abstract

Convective heat transfer for steady state, laminar, hydrodynamically developed flow in microtubes with uniform
temperature and uniform heat flux boundary conditions are solved by the integral transform technique. Temperature
jump condition at the wall and viscous heating within the medium are included. The solution method is verified for the
cases where viscous heating is neglected. For uniform temperature case, with a given Brinkman number, at specified
axial lengths, the viscous effects are presented for the developing range, reaching the fully developed Nusselt number.
The effect of viscous heating is investigated for both of the cases where the fluid is being heated or cooled. Prandtl
number analysis has shown that, as we increase the Prandtl number the temperature jump effect diminishes which gives
a rise to the Nusselt number. © 2001 Published by Elsevier Science Ltd.

1. Introduction

Experiments have shown that the fluid flow and heat
transfer characteristics of microtubes deviate from well-
known macroscale correlations [1,2]. As the channel size
is reduced, wall effects on fluid flow and heat transfer are
considerable. Molecular mean free path and channel size
will have values on the same order of magnitude, al-
lowing molecular structure to affect heat transfer. Col-
lisions of gas molecules with the flow boundary will
occur more often than those between molecules.

Typically, macrochannel boundary conditions that
are applied to fluid flow and heat transfer equations, gas
velocity and temperature, are equivalent to the corre-
sponding wall values. On the contrary, these conditions
are not held for rarefied gas flow in microchannels. Not
only does the fluid slip along the wall with a finite tan-
gential velocity, but also there is a jump between wall
and fluid temperatures.

The Knudsen number (Kn) is used to measure
rarefaction effects. Kn is defined as the ratio of molecular
mean free path and the tube diameter. No-slip condition
is only valid for Kn = 0. The continuum flow assump-
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tion holds for Kn < 1073 [3]. For 1073 < Kn < 0.1, the
flow is called slip flow. As the flow dimension is reduced,
Kn becomes larger. After a transition period, free mo-
lecular flow is experienced.

Navier-Stokes equations combined with slip flow
conditions represent experimental results in microchan-
nels for slip and moderate transition ranges [4,5]. As
mentioned above, two major characteristics of slip flow
are velocity slip and temperature jump at the surface.
These can be determined using the kinetic theory of
gases. For a cylindrical pipe, these two conditions are as:

2—F (0
Velocity slip, us = — 7 7»(6—Z)VZR7 (1)

where u; is the slip velocity, A the molecular mean free

path, and F is the tangential momentum accommoda-
tion coefficient, and

Temperature jump, Ty — Ty

--22EA (T o)
R y+1pe\or ).

where, T; is the temperature of the gas at the wall, T, the
wall temperature, and F; is the thermal accommodation
coefficient. For the rest of the analysis, F and F; will be
shown by F and assumed to be 1 [6]. It is obvious from

these relations that, as 1 increases, velocity slip and
temperature jump also increase.
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Nomenclature

Br Brinkman number, Br = EcPr
cp specific heat, J/kg K

D tube diameter, m

Ec  Eckert number, Ec = u2,/c,AT

F tangential momentum accommodation
coeflicient

F thermal accommodation coeflicient

Gz Graetz number

h heat transfer coefficient, W/m” K
k thermal conductivity, W/m K
Kn Knudsen number

L tube length, m

N normalization integral

Nu Nusselt number, 2D/k

Pr Prandtl number, v/a

R tube radius, m

r radial coordinate

Re Reynolds number, pu,,D/u
fluid temperature, K

fluid velocity, m/s

axial coordinate

%=

Greek symbols

o thermal diffusivity, m?/s

specific heat ratio

a variable that is used to define the
temperature in the developing range
eigenvalue, molecular mean free path
dynamic viscosity, kg/ms

kinematic viscosity, m?/s
eigenfunction

density, kg/m?

non-dimensional temperature
non-dimensional radial coordinate
non-dimensional axial coordinate

< =

IS DD = E o>

Subscripts

b bulk properties

m average values

] fluid properties at the wall
w wall values

0 inlet properties

Superscript
* non-dimensional variables

Sparrow and Lin [7] states that the Nusselt number
decreases with increasing Knudsen number for both
constant temperature and constant heat flux boundary
conditions. The reduction is strongly influenced by the
increased temperature jump. He also states that the en-
trance length varies with Kn; as Kn increases, entrance
length becomes larger.

Barron et al. [6] and Ameel et al. [§] solve the prob-
lem for 0 < Kn < 0.12 with uniform temperature and
uniform heat flux boundary conditions, respectively. In
the former case, he finds that the Nusselt number in-
creases as the wall boundary conditions move further
from the traditional no-slip condition, whereas the latter
shows an opposite effect.

Kavehpour et al. [9] solves the compressible forms of
the momentum and energy equations with slip velocity
and temperature jump boundary conditions in a parallel
plate channel. The effect of compressibility is important
for higher Re and that the effect of rarefaction is sig-
nificant for lower Re. The Nusselt number is substan-
tially lower for slip flows compared to that for
continuum flows.

2. Analysis

2.1. Uniform temperature

We start the analysis with the two-dimensional en-
ergy equation. The fluid properties are assumed to be

constant. Since the fluid next to wall has a temperature
finitely different from the wall temperature, slip tem-
perature should be used for the first boundary condition.
The second and third boundary conditions are centerline
symmetry and uniform temperature at the channel en-
trance.

or _«d(0r\ v (du ’ (3a)
T rar e o\ dr /)’

T=T atr=R, (3b)
%—ZZO at r =0, (3¢)
T=T, atx=0. (3d)

The fully developed velocity profile for slip flow is de-
rived from the momentum equation using the slip
velocity.

2
. 2u, (1 — (r/R)” + 4Kn) 7 )
(14 8Kn)

where u, is the mean velocity and Kn = A/D.Then
temperature, spatial variables, and velocity are non-di-
mensionalized by the temperature of the fluid at the
wall, 7;, tube radius and length, and mean velocity.

T—T; r X u
= =—, u

0=
TO_TS7 n Ru
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The energy equation is obtained in the following form
after introducing non-dimensional parameters

Gz(1—112+4Kn)6_9713( @) 16Br
201+ 8Kn) ot non\"on (1+81<n)2"’
(6a)

where the Graetz number and the Brinkman number are
defined as

RePrD 2
- and Br = n

Gz T kAT’

where AT is the difference between the temperature of
the fluid at the wall and the tube entrance, AT = T — Ts.
The boundary and initial conditions are also non-di-
mensionalized by the same parameters as follows:

0=0 at n=1, (6b)
00

&_0 at n =0, (6¢)
0=1 at{=0. (6d)

The integral transform technique, a straightforward
analytical solution technique, is applied. The funda-
mentals of this technique are obtained from the sep-
aration of variables method [10,11]: First, an
appropriate integral transform pair is developed. Then,
by transformation, the partial derivative with respect to
{ is removed from the governing equation, reducing the
governing equation to an ordinary differential equation.
Finally, the resulting ODE is solved subject to the
transformed initial condition. The temperature distri-
bution is then obtained by applying the inversion for-
mula to the transform of temperature.

The following eigenvalue problem is chosen to de-
velop the solution method.

10/ dy ) 2,

Za—ﬂ (ﬂd—n) + (1 /e 4Kn)/1m¢ = 0, (721)
dy B

afo at n =0, (7b)
=0 atn=1. (7c)

In the above problem definition, y(4,,7)’s and 4,,’s are
the eigenfunctions and eigenvalues. Now, we define the
orthogonality condition of the eigenfunctions

1
/0 11 = 1+ 4K Gy ) s 1) iy

_fo for m # n,
- {N(ﬂ,m) for m = n, (8)

where the normalization integral, N(4,) is calculated
from the following formula:

1
NG = [ 0=+ 4K ) i ©
Then the integral transform pair can be written as:

1
Transform: 0(4,,{) = / n(1 — n* + 4Kn)
Jo

X Y (2, m)O(n, €) di, (10)

l//um: '7)5()%17 C) (1 1)

. - 1
Inversion: 0(y,{) = Z

We now take the transformation of equation (6a). Both
sides of the equation are multiplied by ny(4,,n) and
integrated over the domain, 5 € [0, 1]. We use Green’s
theorem to evaluate the transformation of the second-
order partial derivative in Eq. (6a). Then, the eigenvalue
problem and the boundary conditions of both the gov-
erning equation and the eigenvalue problem are utilized.
Finally, we obtain the corresponding ODE in the fol-
lowing form:

32Br

40, , 2(1 +8Kn)
Gz(1 + 8Kn) .

27
ac Go =

.1
/0 WY (A, 1) dip.
(12)

We note here that the parameter for which we are trying
to solve is the transformed temperature.
The solution to Eq. (12) is easily written as

K, )
9»1 = Pf + CeiPms, (13)

where

32Br

Kn" R rEE e —
Gz(1 + 8Kn)

1
/0 W (o) diy

and

P
GZ 4 m

¢ is determined from the initial condition, Eq. (6d), as

- K
=1, -2 14
c=T, -5, (14)

where 1, is the integral transformation of the initial
condition and is calculated from

1
I, = / 0L = 1P + 4Kn) (i) dn. (15)
0

Then the transformed temperature distribution takes the
following form:



2398 G. Tunc, Y. Bayazitoglu | International Journal of Heat and Mass Transfer 44 (2001) 2395-2403

7 16Br [, 1Y (2, ) iy
" (1 +8Kn)*22

1
0

(1+8Kn)* 22 (16)

m

16Br o Y ) dn> o

By introducing Eq. (16) into the inversion formula, the
non-dimensional temperature field becomes

= Y (ls 1)
0(n, ) = ; T n(1 = n? 4 4Kn) [ (2o, )] diy

o ( 16Br Jy (i) d
(1+8Kn)*22

o1
+ (/ r](] — ;’]2 +4Kn)lp(im7’7) dn
JO

16Br fo 'Y ) dip\ .
T (11 8Kn) 2 ) W)

n

The only unknowns in Eq. (17) are y(A,,n) and 4,,
which are obtained by solving the eigenvalue problem.
Once they are evaluated, the normalization integral and
the transformation of the initial condition are calculated
and substituted into Eq. (17).

We now derive an expression for the local Nusselt
number considering the temperature jump. First, the
local heat transfer rate is written in two different ways
and then equated to solve for the heat convection co-
efficient.

Heat transfer from the fluid to the wall by convection
is written as

gx = h (T, — Tyy). (18)

Heat flux at the wall can also be written using Fourier’s
law

or
=—k—| . 19
qx or | (19)
Equating these two yields
k or
hy= 20
(Tb — Tw) a}" =R ( )
and in the following non-dimensional form
o (k/R) o
U AG-D)/(H-T)} (L =T/ (T - T} on|
(21

The first term in the denominator is 6, by definition. The
second term, however, has to be determined from the
temperature jump boundary condition, which is given by
Eq. (2). We write the jump condition in the following
dimensionless form:

I,—Ty 4y Kn 00
y+1 Pr oy

22
LT (22)

n=1

Substituting Eq. (22) into Eq. (21) results in the final
form of the heat convection coefficient

k 00

R(Qb—i&@ 1) on
=

y+1 Pr On
where the bulk temperature is defined as

1
0, = 2/ (i)O(n,C)n dn.
0 U

The Nusselt number is now easily determined as follows:

hy = —

(23)

b
n=1

hD 25
Ny === = =t . (24)
(9'3 - le % 2_0 )
’ on n=1

2.2. Uniform heat flux

The energy equation for the uniform temperature
case is used with small modifications. The definition of 0
and Br are as follows:

=T we,

= JRIK and Br= 7D

Substitution of these into energy equation yields
Gz(1—n*+4Kn) 00 1 d ( a@) 32Br
20+8Kn) o non\'on) " (1+8kn)
(25)
Centerline symmetry and uniform initial temperature
conditions are the same, however wall boundary con-
dition is given by
00

— =1.
o,

We define a new variable, ¢, as the difference between
the temperature profile and the fully developed tem-
perature profile.

d(n,8) = 0(n,0) = 0 (n, ), (26)

where the fully developed temperature profile is derived
as

_ Cs\ (" = (n*/4) + 4Kni)
¢°°_45+(1+4) (1 + 8Kn)
(44 Cy)(7 + 112Kn + 384Kn*) 961"
Cy (1 4 8Kn)? 16
Cs (1 + 16Kn)
96(1 + 8Kn) 27)
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with
% =0 and ae—m =1,
a"l n=0 a'7 n=1
where
_ 32Br
(1 + 8Kn)

The following equation system, which is obtained after
the substitution of 6 = ¢ + 0, into the energy equation,
is satisfied by ¢

Gz(1 — > +4Kn) ¢ 1 0 ( 6([)) n 32Br )
(1

2(1+8Kn) oL non\"on + 8Kn) |
(28)

0¢

=0 =0
on atn ,
0¢

— =0 atn=1
on atn )

b=¢,=—0. at{=0.

We apply the same procedure to solve for ¢. The
boundary conditions of the eigenvalue problem change.
The following eigenvalue problem is solved in this case

10 dtﬁ) 2 2

——\|n— )+ (l—=n"4+4Kn)AL y =0, 29
nan(7dn (1-n )y (29)
dy _

d—n—O atr]—07

dy

The solution for the transform of ¢, is obtained similar
to Eq. (13)

where
64Br
Km - vms
Gz(1 + 8Kn) / V(o)
and P, = M )2
Gz "
and

1
50:/0 n(1 _n2+41<n)<(1 +";f)

(n* = (n*/4) + 4Knn*)
(1 + 8Kn)
(4 + Cy,)7 + 112Kn + 384Kn?
B 96(1 + 8Kn)’

Co®  C(1+16Kn)

Then, the inversion formula, Eq. (11) is applied to ob-
tain ¢. Finally, the temperature profile is obtained by
adding ¢ and 0.

After we obtain the temperature profile, the Nusselt
number is calculated by using the following expression
similar to the previous case

2
O+ {(40/(r + 1) (Kn/Pr)} — 0y

Nu, = (32)

3. Results and discussion

In this section, we are going to present the effects of
the Knudsen number and the Brinkman number on heat
transfer. The Prandtl number is also an important
parameter for the Nusselt number values, which are
directly proportional to the temperature difference
between the fluid and the wall. Therefore, we will also
discuss the variation of Nu with Pr.

We computed the fully developed Nusselt numbers
for 0 < Kn<0.12, Pr=0.7, and Br =0. The results
are shown in Tables 1 and 3 for two different

bh = K_ _ ]i —Pul boundary conditions. The fully developed Nusselt
b Py + ; (30) y Y P ,
P P number decreases as Kn increases. For the no-slip

Table 1
The fully developed Nusselt number values, Br = 0, constant 7" at the wall

Br=0 Pr=20.6 Pr=20.7 Pr=0.8 Pr=09 Pr=1.0

Kn=10.0 3.6751 3.6751 3.6751 3.6751 3.6751

Kn =0.02 3.3675 3.4317 3.4814 3.5212 3.5536

Kn =0.04 3.0745 3.1833 3.2700 3.3408 3.3997

Kn =0.06 2.8101 2.9482 3.0610 3.1549 3.2342

Kn = 0.08 2.5767 2.7332 2.8636 2.9740 3.0687

Kn=0.10 2.3723 2.5397 2.6816 2.8034 2.9091

Kn=0.12 2.1937 2.3667 2.5156 2.6449 2.7584
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condition Nu,, = 3.6751, while it drops down to 2.3667
for Kn =0.12, a decrease of 35.6%. This is due to the
fact that the temperature jump reduces heat transfer.
As Kn increases, the temperature jump also increases.
Therefore, the denominator of Eq. (24) takes larger
values. Similar results were found in [7]. They report
approximately a 32% decrease. However, in [6], the
Graetz problem is extended to slip flow, where they
find an increase in the Nusselt number for the same
conditions without considering the temperature jump.
Table 3 also indicates a decrease in Nu with increasing
Kn. In this case Nu drops 38.6%, from 4.363 to 2.681.
Ameel et al. [8] and Sparrow and Lin [7] report similar
results.

In Fig. 1, we show the effect of temperature jump on
the Nusselt number clearly. The solid and dashed lines
represent the results from the present study for constant
heat flux and constant temperature boundary con-
ditions, respectively, whereas; squares and diamonds
show the data from Barron et al. [6] and Ameel et al. [8].
When the temperature jump condition is not considered,
in other words, only the velocity slip condition is taken
into account, the Nusselt number increases with in-
creasing Kn, which implies that the velocity slip and
temperature jump have opposite effects on the Nusselt
number.

In Fig. 2, we show the Nusselt number values in the
thermally developing range. For both of the cases, as Kn
increases, the Nusselt number decreases due to the in-
creasing temperature jump. We note here that, the de-
crease is greater when we consider viscous dissipation.
While the fully developed Nusselt number for no-slip
condition is 6.4231 for Br=0.01, it is 3.0729 for
Kn = 0.12 (52.2% decrease as opposed to 35.6% decrease
for no-viscous heating case).

Next we looked at the variation of the fully devel-
oped Nusselt number with the Prandtl number. The
results can be seen in Fig. 3. The lines represent the same

Without temperature jump

-
-
/-ﬂ--"'ﬂ

o
O

With temperature jump

L=
i
n
]
’
r

Fully Developed Nusselt Number
(2]
& &

w
T

L . L L
0 0.02 0.04 0.06 0.08 0.1 0.12
Knudsen Number

Fig. 1. The effect of temperature jump on heat transfer.
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1
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Non-dimensional axlal length

L)

Fig. 2. Variation of the Nusselt number with the Knudsen
number at the entrance region for uniform temperature at the
wall.

5 T T T T T T T
== Uniform heat flux

== == Uniform temperature

Fully Developed Nusselt Number

. : .
06 0.65 07 0.75 08 0.85 0.9 0.95 1
Prandtl Number

Fig. 3. The effect of the Prandtl number on the Nusselt number
under the slip flow conditions.

corresponding values of Kn as those in Fig. 2. Since Pr
tends to decrease the temperature jump by definition
(Eq. (2)), it increases the Nusselt number according to
the statement given above. With the uniform tempera-
ture boundary condition, while there is a 40% decrease
in Nu for Pr = 0.6, the decrease is 24.9% when Pr = 1.
With the uniform heat flux boundary condition Nu de-
creases 43.6% and 26.8% for Pr=0.6 and Pr =1, re-
spectively.

In the following figures, the effect of viscous heating
combined with the slip flow will be presented in more
detail. In Fig. 4, the results for Kn = 0.04 and Pr = 0.7
are seen where the bottom curve represents no-viscous
dissipation condition. The results are given for
0< Br<0.015. Including the Brinkman number causes
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Fig. 4. The effect of viscous heating on heat transfer at the
channel entrance for uniform temperature at the wall.

an increase in Nu. In this case, Nu goes from 3.1833 to
4.8446. The system first reaches the fully developed
condition as if there is no viscous heating. Then, at
some point, Nu makes a jump to its final value. As Br
increases, the jump occurs at a shorter distance from
the entrance. Since the wall temperature is constant,
they all converge to the same fully developed value,
although the Nusselt number is greater for larger values
of the Brinkman number in the developing range. This
effect can be explained by the driving mechanism for
heat transfer, which is the difference between the tem-
peratures of the bulk fluid and the wall. In the present
case, Br is positive. In other words, fluid is being
cooled. The fluid temperature becomes closer to the
wall temperature as it flows through the channel. When
we include viscous heating, fluid temperature takes

Kn =0.04

Pr=0.7

Br=0.0

3

:

|

Nusselt number

Br = 0.01

Br=0.015

3.5

. I L I L ) : s
3-04:02 0.04 0.06 0.08 04 0.12 0.14 0.16 0.18 0.2

Non-dimensional axial length

Fig. 5. The effect of viscous heating on heat transfer at the
channel entrance for uniform heat flux at the wall.

Viscous dissipation is included, Br = 0.01

Viscous dissipation is not included

Fully developed Nusselt Number
&
T

N

L . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12
Knudsen Number

Fig. 6. Variation of the fully developed Nusselt number with
Knudsen number with/without considering viscous heating for
uniform temperature at the wall.

higher values, which increases the temperature differ-
ence between the fluid and the wall and thus heat
transfer.

Since the definition of the Brinkman number is dif-
ferent for the uniform heat flux boundary condition
case, a positive Br means that the heat is transferred to
the fluid from the wall as opposed to the uniform tem-
perature case. Therefore, we see in Fig. 5 that Nu de-
creases as Br increases when Br > 0.

In Fig. 6, the variation of the fully developed Nu with
Kn for these two cases, with and without viscous heat-
ing, is given. It is seen from the figure that, for the
uniform temperature boundary condition at the wall Kn
number increase due to the reduction of the channel size
has more influence with the presence of viscous dissi-
pation.

= Br=0.0
v Br=0.01
= = Br=-0.01

Fully Developed Nusselt Number

25 L L s L s
] 0.02 0.04 0.06 0.08 0.1 0.12

Knudsen Number

Fig. 7. Variation of the fully developed Nusselt number with
Knudsen number with/without considering viscous heating for
uniform heat flux at the wall.
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Fig. 7 shows the effect of positive or negative Br Nusselt number takes higher values for Br < 0 and lower
values (Br = F0.01) on heat transfer. As we mentioned values for Br > 0.
before, for this type of boundary condition, a negative The fully developed Nusselt number values for all of
Br means that the fluid is being cooled. Therefore, the the cases discussed here, are given in Tables 1-5.
Table 2
The fully developed Nusselt number values, Br = 0.01, constant 7 at the wall
Br=10.01 Pr=0.6 Pr=0.7 Pr=20.8 Pr=0.9 Pr=1.0
Kn=0.0 6.4231 6.4231 6.4231 6.4231 6.4231
Kn =0.02 5.3971 5.5639 5.6959 5.8031 5.8917
Kn =0.04 4.5971 4.8446 5.0484 5.1291 5.3643
Kn =0.06 3.9769 4.2592 4.4987 4.7044 4.8831
Kn =0.08 3.4903 3.7838 4.0385 4.2615 4.4586
Kn=0.10 3.1022 3.3947 3.6531 3.8830 4.0888
Kn=0.12 2.7824 3.0729 3.2856 3.5589 3.7675
Table 3
The fully developed Nusselt number values, Br = 0, constant ¢ at the wall
Br=20 Pr=0.6 Pr=0.7 Pr=038 Pr=09 Pr=1.0
Kn=0.0 4.3627 4.3627 4.3627 4.3627 4.3627
Kn =0.02 3.9801 4.0701 4.1403 4.1966 4.2428
Kn =0.04 3.5984 3.7483 3.8692 3.9687 4.0521
Kn =0.06 3.2519 3.4383 3.5927 3.7227 3.8337
Kn =0.08 2.9487 3.1554 3.3306 3.4808 3.6112
Kn=0.10 2.6868 2.9035 3.0904 3.2533 3.3966
Kn=0.12 2.4613 2.6813 2.8739 3.0440 3.1953
Table 4
The fully developed Nusselt number values, Br = 0.01, constant ¢ at the wall
Br=10.01 Pr=20.6 Pr=0.7 Pr=038 Pr=09 Pr=10
Kn=20.0 4.0353 4.0353 4.0353 4.0353 4.0353
Kn =0.02 3.7905 3.8720 3.9355 3.9863 4.0280
Kn =0.04 3.4863 3.6268 3.7398 3.8327 3.9104
Kn = 0.06 3.1833 3.3617 3.5091 3.6331 3.7387
Kn =0.08 2.9052 3.1056 3.2752 3.4204 3.5462
Kn=0.10 2.6582 2.8701 3.0527 3.2115 3.3510
Kn=0.12 2.4419 2.6583 2.8475 3.0144 3.1627
Table 5
The fully developed Nusselt number values, Br = —0.01, constant ¢ at the wall
Br=-0.01 Pr=20.6 Pr=0.7 Pr=038 Pr=0.9 Pr=1.0
Kn=0.0 4.7481 4.7481 4.7481 4.7481 4.7481
Kn =0.02 4.1898 4.2897 4.3677 4.4304 4.4819
Kn =0.04 3.7181 3.8783 4.0078 4.1147 4.2044
Kn =0.06 3.3236 3.9337 3.5185 3.6803 3.8169
Kn =0.08 2.9935 3.2069 3.3879 3.5436 3.6787
Kn =0.10 2.7160 2.9377 3.1292 3.2963 3.4434

Kn=0.12 2.4810 2.7047 2.9008 3.0742 3.2286
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